▲图片来源:Pixabay
记者从中国科学技术大学获悉,该校日地空间物理研究团队在关于太阳耀斑极紫外辐射的研究中取得重要进展。研究成果日前发表于《天体物理学杂志》。
太阳极紫外辐射直接作用于地球高层大气,可影响卫星寿命、无线电通讯和卫星导航等,极紫外后相一经发现就引起了广泛关注。太阳耀斑通常在软X射线波段产生一个流量峰,称为耀斑“主相”。主相期间耀斑附近的等离子体被迅速加热到上千万摄氏度,各波段峰值时间接近;之后X射线流量衰减,等离子体温度也逐渐冷却到日冕背景温度——约100万摄氏度。太阳动力学观测站SDO卫星上测量太阳极紫外辐射的EVE仪器发现,有些耀斑主相后约几十分钟在一些中等温度的极紫外发射线存在第二个峰,称为“极紫外后相”。最典型的是失去15个电子的铁离子在波长为33.5纳米的发射线,其形成温度约250万摄氏度。一些零星的个例分析发现,主相的色球耀斑带通常为环形,连接主相耀斑带和远处孤立耀斑带的大尺度冕环系统与极紫外后相有关。后相的成因是由于这一大尺度环系的缓慢冷却还是由于二次加热,目前尚存争议。
研究团队系统考察了2010-2014年间55个伴随极紫外后相的耀斑,意外发现其中23个双带耀斑,而环形耀斑仅19个,其余事件的耀斑带形状较为复杂。样本中48%的双带耀斑和37%的环形耀斑伴随“超强极紫外后相”,即后相峰值超越主相,这被认为是存在额外加热过程的证据。然而,由于后相区域的尺度普遍大于主相区域,且与主相区域相分离,大部分事件中主、后相峰值延迟时间与等离子体冷却模型估算的时间相仿。统计结果表明以热传导和热辐射为主的冷却机制可能在极紫外后相的产生中占主导地位,但是双带耀斑比环形耀斑更有可能包含额外的加热机制。
作者:吴长锋
编辑:顾军
责任编辑:姜澎
来源:科技日报
声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请作者持权属证明与本网联系,我们将及时更正、删除,谢谢。